What is a natural alternative to methamphetamine

Handbook of Psychoactive Substances pp 1-18 | Cite as

  • Felix Betzler
  • Stephan Koehler
Living reference work entry
First Online:
Part of the Springer Reference Psychology book series (SRP)

Summary

Methamphetamine, (basis of so-called "crystal meth") causes a subjectively perceived increase in performance, a reduction in physical and psychological symptoms of fatigue and euphoria. It develops its effect on the central nervous system mainly through an increase in the concentration of noradrenaline and dopamine in the synaptic gap.

Although methamphetamine is not a new substance, it is playing an increasingly important role in our health system due to its growing prevalence and is receiving increasing media attention.

It is ingested by a wide range of consumers with very different motivations, including improving performance in the workplace, coping with everyday situations and in certain parts of the party scene.

Damage from long-term consumption affects several organ systems and the neurotoxicity leads to clear deficits in cognitive functions. Excessive utility models often lead to psychiatric symptoms such as amphetamine psychosis.

keywords

Metamphetamine Amphetamine Crystal Meth Ice Desoxyn Pervitin
This is a preview of subscription content, log in to check access.

literature

  1. Adlersberg, D., & Mayer, M. E. (1949). Results of prolonged medical treatment of obesity with diet alone, diet and thyroid preparations, and diet and amphetamine. Journal of Clinical Endocrinology and Metabolism, 9(3), 275-284. CrossRefPubMedGoogle Scholar
  2. Aron, J. L., & Paulus, M. P. (2007). Location, location: Using functional magnetic resonance imaging to pinpoint brain differences relevant to stimulant use. Addiction, 102(Suppl 1), 33-43. CrossRefPubMedGoogle Scholar
  3. Baicy, K., & London, E.D. (2007). Corticolimbic dysregulation and chronic methamphetamine abuse. Addiction, 102(Suppl 1), 5-15. CrossRefPubMedGoogle Scholar
  4. Barr, A.M., Panenka, W.J., MacEwan, G.W., Thornton, A.E., Lang, D.J., Honer, W.G., et al. (2006). The need for speed: An update on methamphetamine addiction. Journal of Psychiatry and Neuroscience, Dec.(5), 301-313. PubMedPubMedCentralGoogle Scholar
  5. Berman, S., O'Neill, J., Fears, S., Bartzokis, G., & London, E. D. (2008). Abuse of amphetamines and structural abnormalities in the brain. Annals of the New York Academy of Sciences, 1141, 195-220. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berman, S.M., Voytek, B., Mandelkern, M.A., Hassid, B.D., Isaacson, A., Monterosso, J., et al. (2008). Changes in cerebral glucose metabolism during early abstinence from chronic methamphetamine abuse. Molecular Psychiatry, Jan.(9), 897-908. CrossRefPubMedGoogle Scholar
  7. BKA. (2014). Synthetic drugs on the advance - the drug commissioner of the federal government and the President of the Federal Criminal Police Office present the drug situation and the number of drug deaths in 2014. Federal Criminal Police Office.Google Scholar
  8. BMJV. (2001). Law on the traffic in narcotics (Narcotics Act - BtMG) Annex II (to Section 1, Paragraph 1, narcotics that are marketable but not prescribable). B. d. J. u.f. consumer protection.Google Scholar
  9. Brandon, S., & Smith, D. (1962). Amphetamines in general practice. The Journal of the College of General Practitioners, 5, 603-606.PubMedPubMedCentralGoogle Scholar
  10. Brensilver, M., Heinzerling, K. G., & Shoptaw, S. (2013). Pharmacotherapy of amphetamine-type stimulant dependence: An update. Drug and Alcohol Review, 32(5), 449-460. PubMedPubMedCentralGoogle Scholar
  11. Caldwell, J., Dring, L.G., & Williams, R.T. (1972). Metabolism of (14 C) methamphetamine in man, the guinea pig and the rat. Biochemical Journal, 129(1), 11-22. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chiu, C. T., Ma, T., & Ho, I. K. (2006). Methamphetamine-induced behavioral sensitization in mice: Alterations in mu-opioid receptor. Journal of Biomedical Science, 13(6), 797-811. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cho, A.K., & Melega, W.P. (2002). Patterns of methamphetamine abuse and their consequences. Journal of Addictive Diseases, Jan.(1), 21–34. CrossRefPubMedGoogle Scholar
  14. Ciccarone, D. (2011). Stimulant abuse: Pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Primary Care, 38(1), 41-58. v-vi.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Colfax, G.N., Santos, G.M., Das, M., Santos, D.M., Matheson, T., Gasper, J., et al. (2011). Mirtazapine to reduce methamphetamine use: A randomized controlled trial. Archives of General Psychiatry, 68(11), 1168-1175. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Comer, S. D., Mogali, S., Saccone, P.A., Askalsky, P., Martinez, D., Walker, E.A., et al. (2013). Effects of acute oral naltrexone on the subjective and physiological effects of oral D-amphetamine and smoked cocaine in cocaine abusers. Neuropsychopharmacology, 38(12), 2427-2438. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Courtney, K. E., & Ray, L. A. (2014). Methamphetamine: An update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug and Alcohol Dependence, 143, 11–21. CrossRefPubMedGoogle Scholar
  18. Cruickshank, C. C., & Dyer, K. R. (2009). A review of the clinical pharmacology of methamphetamine. Addiction, 104(7), 1085-1099. CrossRefPubMedGoogle Scholar
  19. Drug Enforcement Administration. (2016). Drug scheduling. Drug Enforcement Administration. Virginia, USA: Springfield.Google Scholar
  20. Dean, A. C., Groman, S. M., Morales, A. M., & London, E. D. (2013). An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology, 38(2), 259-274. CrossRefPubMedGoogle Scholar
  21. The drug commissioner of the federal government, the Federal Ministry of Health (BMG) and the German Medical Association (BÄK). (2016). S3 guideline methamphetamine-related disorders, consultation version.Google Scholar
  22. Drug Enforcement Administration. (2014). Final adjusted aggregate production quotas for schedule I and II controlled substances and assessment of annual needs for the list I chemicals ephedrine, pseudoephedrine, and phenylpropanolamine for 2013. DEA. Virginia, USA: Springfield.Google Scholar
  23. EMCDDA. (2014). Exploring methamphetamine trends in Europe. Luxembourg: Publications Office of the European Union.Google Scholar
  24. EMCDDA. (2015). European drug report. EMCDDA.Google Scholar
  25. EMCDDA. (2016). European drug report. EMCDDA.Google Scholar
  26. More solid. (2009). Secrets of methamphetamine manufacture. Green Bay: Festering Publications.Google Scholar
  27. Ford, C.P., Mark, G.P., & Williams, J.T. (2006). Properties and opioid inhibition of mesolimbic dopamine neurons vary according to the target location. The Journal of Neuroscience, Jan.(10), 2788-2797. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gelvin, E.P., & Mc, G.T. (1949). Dexedrine and weight reduction. New York State Journal of Medicine, 49(3), 279-282. PubMedGoogle Scholar
  29. Glasner-Edwards, S., & Mooney, L. J. (2014). Methamphetamine psychosis: Epidemiology and management. CNS Drugs, 28(12), 1115-1126. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grinspoon, L., & Hedblom, P. (1976). Speed ​​culture: Amphetamine use and abuse in America. Cambridge, MA: Harvard University Press.Google Scholar
  31. Groman, S.M., Lee, B., Seu, E., James, A.S., Feiler, K., Mandelkern, M.A., et al. (2012). Dysregulation of D (2) -mediated dopamine transmission in monkeys after chronic escalating methamphetamine exposure. The Journal of Neuroscience, 32(17), 5843-5852. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Herbeck, D. M., Brecht, M. L., & Lovinger, K. (2015). Mortality, causes of death and health status among methamphetamine users. Journal of Addictive Diseases, 34(1), 88-100. CrossRefPubMedGoogle Scholar
  33. Herman-Stahl, M. A., Krebs, C. P., Kroutil, L. A., & Heller, D. C. (2007). Risk and protective factors for methamphetamine use and nonmedical use of prescription stimulants among young adults aged 18 to 25. Addictive Behaviors, 32(5), 1003-1015. CrossRefPubMedGoogle Scholar
  34. Hermens, D. F., Lubman, D. I., Ward, P. B., Naismith, S. L., & Hickie, I. B. (2009). Amphetamine psychosis: A model for studying the onset and course of psychosis. The Medical Journal of Australia, 190(4 Suppl), S22-S25.PubMedGoogle Scholar
  35. Hillemacher, T., Kornhuber, J., & Bleich, S. (2007). Neurobiological mechanisms and pharmacological treatment options for alcohol craving. Advances in Neurology-Psychiatry, 75(1), 26–32. CrossRefPubMedGoogle Scholar
  36. Homer, B. D., Solomon, T. M., Moeller, R. W., Mascia, A., DeRaleau, L., & Halkitis, P. N. (2008). Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and behavioral implications. Psychological Bulletin, 134(2), 301-310. CrossRefPubMedGoogle Scholar
  37. Iversen, L. (2005). Speed, ecstasy, ritalin. Oxford: Oxford University Press.Google Scholar
  38. Jayaram-Lindstrom, N., Wennberg, P., Hurd, Y. L., & Franck, J. (2004). Effects of naltrexone on the subjective response to amphetamine in healthy volunteers. Journal of Clinical Psychopharmacology, 24(6), 665-669. CrossRefPubMedGoogle Scholar
  39. Karila, L., Weinstein, A., Aubin, H. J., Benyamina, A., Reynaud, M., & Batki, S. L. (2010). Pharmacological approaches to methamphetamine dependence: A focused review. British Journal of Clinical Pharmacology, 69(6), 578-592. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kiefer, F., & Wiedemann, K. (2004). Neuroendocrine pathways of addictive behavior. Addiction Biology, Sept.(3-4), 205-212. CrossRefPubMedGoogle Scholar
  41. Kiloh, L. G., & Brandon, S. (1962). Habituation and addiction to amphetamines. British Medical Journal, 2(5296), 40-43. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lee, N.K., & Rawson, R.A. (2008). A systematic review of cognitive and behavioral therapies for methamphetamine dependence. Drug and Alcohol Review, 27(3), 309-317. CrossRefPubMedPubMedCentralGoogle Scholar
  43. London, E. D., Simon, S. L., Berman, S. M., Mandelkern, M. A., Lichtman, A. M., Bramen, J., et al. (2004). Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Archives of General Psychiatry, 61(1), 73-84. CrossRefPubMedGoogle Scholar
  44. McKetin, R., Kelly, E., & McLaren, J. (2006). The relationship between crystalline methamphetamine use and methamphetamine dependence. Drug and Alcohol Dependence, 85(3), 198-204. CrossRefPubMedGoogle Scholar
  45. McKetin, R., Ross, J., Kelly, E., Baker, A., Lee, N., Lubman, D.I., et al. (2008). Characteristics and harms associated with injecting versus smoking methamphetamine among methamphetamine treatment entrants. Drug and Alcohol Review, 27(3), 277-285. CrossRefPubMedGoogle Scholar
  46. Meredith, C. W., Jaffe, C., Ang-Lee, K., & Saxon, A. J. (2005). Implications of chronic methamphetamine use: A literature review. Harvard Review of Psychiatry, Jan.(3), 141-154. CrossRefPubMedGoogle Scholar
  47. Nestor, L. J., Ghahremani, D. G., Monterosso, J., & London, E. D. (2011). Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Research, 194(3), 287-295. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pabst, A., Kraus, L., Gomes de Matos, E., & Piontek, D. (2013). Substance use and substance-related disorders in Germany in 2012. LOOKING FOR, 59(6), 321–331. CrossRefGoogle Scholar
  49. Patzak, J., & Bohnen, W. (2010). Narcotics law. Munich: C.H. Beck.Google Scholar
  50. Paulus, M. P., Hozack, N., Frank, L., Brown, G. G., & Schuckit, M. A. (2003). Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biological Psychiatry, 53(1), 65-74. CrossRefPubMedGoogle Scholar
  51. Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62(7), 761-768. CrossRefPubMedGoogle Scholar
  52. Piontek, D., Pfeiffer-Gerschel, T., Jakob, L., Pabst, A., & Kraus, L. (2013). Secondary analyzes as part of the project “Abuse of amphetamines in Germany: Study on the motivation and consumption habits of people who abuse amphetamines. B. f. Health. Bern: Hogrefe AG.Google Scholar
  53. Rasmussen, N. (2008). America’s first amphetamine epidemic 1929–1971. American Journal of Public Health, 98(6), 974-985. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rasmussen, N. (2015). Amphetamine-type stimulants: The early history of their medical and non-medical uses. International Review of Neurobiology, 120, 9–25. CrossRefPubMedGoogle Scholar
  55. Recordati Rare Diseases Inc. (2013). Medication guide - Desoxyn. Lebanon: Food and Drug Administration.Google Scholar
  56. Rusyniak, D. E. (2013). Neurologic manifestations of chronic methamphetamine abuse. The Psychiatric Clinics of North America, 36(2), 261-275. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Salamanca, S. A., Sorrentino, E. E., Nosanchuk, J. D., & Martinez, L. R. (2014). Impact of methamphetamine on infection and immunity. Frontiers in Neuroscience, 8, 445. PubMedGoogle Scholar
  58. Salo, R., Fassbender, C., Buonocore, M. H., & Ursu, S. (2013). Behavioral regulation in methamphetamine abusers: An fMRI study. Psychiatry Research, 211(3), 234-238. CrossRefPubMedGoogle Scholar
  59. Scott, J.C., Woods, S.P., Matt, G.E., Meyer, R.A., Heaton, R.K., Atkinson, J.H., et al. (2007). Neurocognitive effects of methamphetamine: A critical review and meta-analysis. Neuropsychology Review, Jan.(3), 275-297. CrossRefPubMedGoogle Scholar
  60. Sekine, Y., Ouchi, Y., Takei, N., Yoshikawa, E., Nakamura, K., Futatsubashi, M., et al. (2006). Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Archives of General Psychiatry, 63(1), 90-100. CrossRefPubMedGoogle Scholar
  61. Thomasius, R., Gouzoulis-Mayfrank, E., Karus, C., Wiedenmann, H., Hermle, L., Sack, P.M., et al. (2004). AWMF treatment guideline: Mental and behavioral disorders caused by cocaine, amphetamines, ecstasy and hallucinogens. Advances in Neurology-Psychiatry, 72(12), 679-695. CrossRefPubMedGoogle Scholar
  62. Thompson, P.M., Hayashi, K.M., Simon, S.L., Geaga, J.A., Hong, M.S., Sui, Y., et al. (2004). Structural abnormalities in the brains of human subjects who use methamphetamine. The Journal of Neuroscience, Jan.(26), 6028-6036. CrossRefPubMedGoogle Scholar
  63. Tiihonen, J., Krupitsky, E., Verbitskaya, E., Blokhina, E., Mamontova, O., Fohr, J., et al. (2012). Naltrexone Implant for the Treatment of Polydrug Dependence: A Randomized Controlled Trial. The American Journal of Psychiatry, 169(5), 531-536. CrossRefPubMedGoogle Scholar
  64. Ujike, H., & Sato, M. (2004). Clinical features of sensitization to methamphetamine observed in patients with methamphetamine dependence and psychosis. Annals of the New York Academy of Sciences, 1025, 279-287. CrossRefPubMedGoogle Scholar
  65. Vocci, F. J., & Appel, N.M. (2007). Approaches to the development of medications for the treatment of methamphetamine dependence. Addiction, 102(Suppl 1), 96-106. CrossRefPubMedGoogle Scholar
  66. Volkow, N.D., Chang, L., Wang, G.J., Fowler, J.S., Franceschi, D., Sedler, M., et al. (2001a). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. The Journal of Neuroscience, Jan.(23), 9414-9418. PubMedGoogle Scholar
  67. Volkow, N.D., Chang, L., Wang, G.J., Fowler, J.S., Franceschi, D., Sedler, M.J., et al. (2001b). Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. The American Journal of Psychiatry, 158(3), 383-389. CrossRefPubMedGoogle Scholar
  68. Volkow, N.D., Chang, L., Wang, G.J., Fowler, J.S., Leonido-Yee, M., Franceschi, D., et al. (2001c). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. The American Journal of Psychiatry, 158(3), 377-382. CrossRefPubMedGoogle Scholar
  69. Yu, S., Zhu, L., Shen, Q., Bai, X., & Di, X. (2015). Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behavioral Neurology, 2015, 103969.PubMedPubMedCentral